53 research outputs found

    A formal ontology for data mining : principles, design, and evolution

    Get PDF

    Anaerobic Fungi Isolated From Bactrian Camel Rumen Contents Have Strong Lignocellulosic Bioconversion Potential

    Get PDF
    This study aims to obtain anaerobic fungi from the rumen and fecal samples and investigates their potential for lignocellulosic bioconversion. Multiple anaerobic strains were isolated from rumen contents (CR1–CR21) and fecal samples (CF1–CF10) of Bactrian camel using the Hungate roll tube technique. After screening for fiber degradability, strains from rumen contents (Oontomyces sp. CR2) and feces (Piromyces sp. CF9) were compared with Pecoramyces sp. F1 (earlier isolated from goat rumen, having high CAZymes of GHs) for various fermentation and digestion parameters. The cultures were fermented with different substrates (reed, alfalfa stalk, Broussonetia papyrifera leaves, and Melilotus officinalis) at 39°C for 96 h. The Oontomyces sp. CR2 had the highest total gas and hydrogen production from most substrates in the in vitro rumen fermentation system and also had the highest digestion of dry matter, neutral detergent fiber, acid detergent fiber, and cellulose present in most substrates used. The isolated strains provided higher amounts of metabolites such as lactate, formate, acetate, and ethanol in the in vitro rumen fermentation system for use in various industrial applications. The results illustrated that anaerobic fungi isolated from Bactrian camel rumen contents (Oontomyces sp. CR2) have the highest lignocellulosic bioconversion potential, suggesting that the Bactrian camel rumen could be a good source for the isolation of anaerobic fungi for industrial applications

    Martensitic Transition and Superelasticity of Ordered Heat Treatment Ni-Mn-Ga-Fe Microwires

    No full text
    The preparation of Ni-Mn-Ga and Ni-Mn-Ga-Fe master alloy ingots and microwires was completed by high vacuum electric furnace melt melting furnace and melt drawing liquid forming equipment, and the lattice dislocations and defects formed inside the microwires during the preparation process were corrected by stepwise ordered heat treatment. The micro-structure and phase structure were characterized using a SEM field emission scanning electron microscopy and an XRD diffractometer combined with an EDS energy spectrum analyzer; the martensitic phase transformation process of the microwires was analyzed using a DSC differential scanning calorimeter; and the superelasticity of the microwires was tested by a Q800 dynamic mechanical analyzer. The results indicate that Fe doping can refine the grain, transform the phase structure from parent phase to single 7M martensite, reduce the number of martensitic variants, and increase the mobility of the twin grain boundary interface. The MT phase transition temperature (MS) is substantially increased in the martensite transition (MT) process by the increase of the number of free electrons in its lattice. During the superelasticity (SE) test, both microwires displayed superior recover-ability of SE curves, and the Fe doping curves showed similar characteristics of “linear superelasticity”, showing higher critical stress values and complete SE in the experiment. The critical stress satisfies the Clausius-Clapeyron equation and exhibits higher temperature sensitivity than Ni-Mn-Ga microwires

    Comparison of clinical efficacy and stability of Toric implantable collamer lens implantation in different orientations

    No full text
    AIM: To compare the clinical efficacy, vault, and rotational stability of horizontal, oblique, and vertical implantation of Toric implantable collamer lens(TICL).METHODS: Retrospective cohort study. A total of 92 cases(120 eyes)who underwent TICL implantation from July 2018 to March 2022 and had regular follow-up for at least 1 a postoperatively(1 d, 1 wk, 1, 3, 6 mo, and 1 a)at Wuhan Bright Eye Hospital were collected. The patients were divided into three groups, with 34 cases(45 eyes)in horizontal implantation group, 25 cases(29 eyes)in oblique implantation group(29 cases), and 33 cases(46 eyes)in vertical implantation group. Uncorrected distance visual acuity(UDVA), corrected distance visual acuity(CDVA), diopters, vault, and rotation angle(deviation of the actual axis of TICL from the expected axis).RESULTS: All surgeries were uneventful, and there were no complications such as infection, secondary glaucoma, or cataract opacity. Safety and efficacy of the surgery: the CDVA of the three groups of patients was better than or equal to the preoperative CDVA at 1 a postoperatively, and there was no statistically significant differences in postoperative UDVA and CDVA of the three groups(P>0.05). The safety index at 1a postoperatively was 1.34±0.21, 1.34±0.17, and 1.31±0.18 for the horizontal, oblique, and vertical groups, respectively. The efficacy index was 1.26±0.21, 1.33±0.18, and 1.27±0.16 for the three groups, respectively, both with no statistically significant differences(P>0.05). Vault: there was a significant difference in postoperative vault among the three groups(P=0.003), with the vertical group having the lowest vault, followed by the horizontal group and the oblique group. The vaults at different follow-up time points within each group showed significant differences(P<0.001), and all decreased over time. Residual astigmatism: there was no significant difference in residual astigmatism among the three groups(P=0.130), but there were differences at different follow-up time points within each group(P<0.001). Rotation angle: no significant differences in rotation angle were observed among the three groups(P=0.135), but there were differences at different follow-up time points within each group(P<0.001).CONCLUSION: The implantation of TICL in different orientations has good safety and efficacy, the postoperative rotational stability is good, and the appropriate angle can be selected to implant TICL according to the clinical situation

    Cooling and Energy-Saving Performance of Different Green Wall Design: A Simulation Study of a Block

    No full text
    To mitigate the urban heat island (UHI) and release the low carbon potential of green walls, we analyzed the cooling and energy-saving performance of different green wall designs. Envi-met was applied as the main simulation tool, and a pedestrian street named Yuhou Street was selected as the study object. Four designs of walls were summarized and simulated, demonstrating the living wall system (LWS). Super soil had superiority in cooling and energy saving. Outdoor air temperature, indoor air temperature, outside wall surface temperature, and inside wall surface temperature were analyzed. Apart from the outdoor air temperature, the other three temperatures were all significantly affected by the design of green walls. Finally, energy savings in building cavities were determined. The indoor energy saving ratio of the LWS based on super soil reached 19.92%, followed by the LWS based on boxes at 15.37%, and green facades wall at 6.29%. The indoor cooling powers on this typical day showed that the cooling power of the LWS based on super soil was 8267.32 W, followed by the LWS based on boxes at 6381.57 W, and green facades wall at 2610.08 W. The results revealed the difference in cooling and energy-saving performance of different green walls in this typical hot summer area
    • …
    corecore